
Journal of Pure and Applied Algebra 30 (1983) 277-292 
North-Holland 

277 

THE UNIVERSAL COVER OF A QUIVER WITH RELATIONS 

R. MARTfNEZ-VILLA and J.A. DE LA PERA 
InsWrro de Matemiticas U. IV. A.M., A reu de fa investigacidn Cierm~ica, Detegacio’n Coyoactin, 

04510 Me’sico, D. F. Mexico 

Communicated by H. Bass 
Received 17 June 1982 

Covering techniques in representation theory have become important after the 
work of Bongartz-Gabriel [2), Gabriel [4] and Riedtmann 191, [ 101. The construc- 
ticn of these covers assumes that the Auslander-Reiten quiver is known. 

In this paper we associate to any finite-dimensional k-algebra (k algebraically 
closed) a covering of its usual quiver independent of the ‘4uslander-Reiten quiver 
(this covering is in fact a particular case of the covering developed by Green [ 5 J). 

This construction is defined for any representation type a.nd it is Galois (or regular 
in the topological sense). Unfortunately, it depends on the choice of an ideal. 

We will prove however that it is unique for coverings without oriented cycles and 
that for the standard case it coincides with the covering given by Gabriel in [4]. 

We will use this cover to give another characterization of the simply connected 
algebras considered by Bongartz-Gabriel [2) and Bautista-Larrion-Salmeron [I]. 
We can use it also to prove that the standard algebras are precisely those algebras 
of finite representation type having a covering without oriented cycles. 

The results proved are essentially contained in the second author’s Master thesis 

IQ 
While writing these paper we received from Bretscher and Gabriel [3] a 

construction which does not require either the knowledge of the indecomposable 
modules. 

J. Wdschbiisch has used a similar covering [ 111, we thank him and F. Larri6n for 
some helpful conversations. 

1. The universal cover 

Let us fix some notation. Throughout the paper k will be an algebraically closed 
field. Let Q bc a non-necessarily finite quiver with vertices QO and arrows Q,. For 
any vertex SE Qo, x+(resp. x ) will denote the set of vertices _V such that there exists 
an arrow s -+_t’ (resp. *V -+A-). We assume Q has no double arrows and is connected. 

Followin: [2), kQ will be the path category and F the ideal of kQ generated by 
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the arrows. An ideal of kQ will be called admissible if for any vertex XE QO there 
exist natural numbers m,n such that 

F”(x, w’CI(x, KF’(s,.) and F”‘(*,~)cI(.,.~)~~F~(.,s). 

If Q is localIy finite and I admissible, k(Q, I) = kQ/Z is a locally bounded category. 
Conversely, for any locally bounded k-category 7;’ there is a locally finite quiver Q 
and an admissible ideal I such that f s k(<& lr). (See [2] .) 

A pair (b I) aq above will be called a quiver with relations. 

1.1. Definitions. A group G of (Q, I)-automorphisms is a group of automorphisms 
of the quiver Q which preserve the ideal 1. The group is called admissible if for each 
vertex .YE Q. the G-orbit contains at most one vertex from .Y’ and one from _I?. 

Given an admissible group G of (Q, I)-automorphisms, we can define the o&if 
yl/ilqer Q/G. Let II : Q -+ Q/G be the natural map and denote T= n(l) the ideal of 
Q/G induced by I. In this situation we h;a\e the following lemma: 

A morphism of quivers with relations .f: (A, J)-+(Q, I) is a awring if there exists 

an admissible group of (3, J), G such that the following diagram comit:utes. 

(-1, J) 
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Proof. We write 8 = Cy=, Aiui with lj E k* and ui, i= 1, . . . , n pairwise different 
directed paths (we say Q is in a reduced form). Since f is a covering map, there exist 

c~EJ(x~,J$ 6= I, . . . . nt apd e= I:, f&). AS f(f) =x=f(x;), there is a ,lli E G with 
g,Xi =3 for i= 1, l .* ) m. Then, oi =gifi E J(-T,giyi) and Q = Cyi, f(ai). We can clearly 
assume the vertices giyi are pairwise different. We write Gi = CJnl:, ~UOU in reduced 
form. So we obtain 

which is also in reduced form, because of the unique path lifting property. 
Therefore, there exists a bijection 

r: (l,..., n)~{(i..i)ll~{1,...,m},j~{l,...,~t,}} 
such that 14, = f(t+,,) and A, =,u,(,) for every i E { 1, . . . , n}. 

If we had m>l, ~#K=T ‘{(l&/j= l,...,n,)S:{l,--3) such that 

CA 1111= i P,,f(olj)=f(al)Ef( J)=I, IEK J-1 

which is a contradiction in case e is a minimal or zero relation. Thus nt = 1 and 

&I =_J(a,). : 1 

Denote now by m(l) the set of minimal relations of the ideal 7. By 1 A, the 

category of coverings of (Q, 7) with covering maps is just the category Cov(Q, m(1)) 

defined in [S]. 

Applying [5; ( 1.2)] to our particular case we get 

1 S. Corollary. There exists a universal cover of (Q, I). That is, there is a covering 
map n : (0, r’,--+(Q, I) such that for any other covering map f : (Q, r)-+(Q, I) there 
exists a covering n ’ : (0, I‘) 3 (0, 7) with f n ’ = n. If 3 E ot, and x E & are such that 
n.\’ =./Z, then n’ can be uniquely chosen so that n’.? = x 

We give here a brief description of (0, r), because it will be required later. 
Fis a vertex A+ QI,. Let I+’ be the topological universal cover of Q with base 

point in .Y~,. There is a natural map p: W -+Q given by the action of the fundamen- 

tal group 77, (Q, A-& Let N(Q, m(l), _vlb) bc the subgroup of J7, (Q, A+) defined in [5]. 

That is, N(Q, m(l), x,,) is the normal subgroup of 7& (Q, _u,,) genl:rar e;td by all 

elements of the form [y ‘31 Ivy] where y is a path from _Y~) to x and II, u are directed 

paths from s to _V such that there is an element C:’ , A, w, em(l) with II = M’] and 
V = wp 

Then, 6 is the orbit quiver U’/N(QY w(I), x0) and the map n : @-+ Q is gken bz 

f he action of the group -‘7, (Q, 7) = 77, (Q, .v&/V(Q, m(I), xc,). The relations m(7) can 

be lifted to 0. So, i is the admissible ideal of k-0 generated by the liftings of the 

dcmcnts of r?l(l) 3 
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Given a basic and indecomposable k-algebra A, we can build a quiver with 
relations (Q, I) sucF that A z k(Q, I). We can now obtain the universal cover 
71: (Q, I’,-+(Q, I) an4 induce a functor k(n): k(o, &-*A. We would like to say that 
/1’ = k@, f) is the universal cover of A. Unlcortunately this cannot be done because 
of the ambiguity In the choice of the idea1 I. Let’s remind the following example 
given by Riedtmann: 

and let 1, be the ideal generated by CT’ - yj& by --~c~y,c? and I? generated by 
CL’? - ,$* /!+, cr4. 

Let A I = k( Q, !, ) and AZ = k(Q, [?) be the corresponding algebras. If char k #2, 
z a 1:. Never-t heless, the universal cover of (Q, I, ) is itself and the universal cover 

(0, I?) is an infinite quiver. 

C’niversill covers without oriented cycles 

Let (Q, I ) be a quiver with relations. Throughout this section ,I = k(Q, I) will be 

a lo~11y rcprcscritaiion-finite Category (see f2]). 

WC are interested in the existence of coverings of (Q, I) without \;ri;r:wd cycles. 

C‘k~trly, this i5 equivalent to ar,k for the same condition on the uniwrsai cover. 

WC 14 mt the foliowing conditions proved by Jans [6]. 

Ixt P, md P, be two inde~omposable projective A-moduks. Thei End ,(P, ) and 
Fml ,(P?) xc‘ uniscriai rings and Horn ,(P,, P2) is a End ,(P+End ,(P, j bitnodule 

u hich is uniwrial either as End., (P,$-module or as End ,(P,)-mor_lule. 

I.ct 71 : (0, f)-+(Q, /) bt2 the universal iover of (Q./). 
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(cl l_f x 5 y & z are directed paths with W, wu $ I and J E k*, then we have 

uu+Awu~I if andwon[v if v+AwEI. 

Proof. By 2.1 and 2.2, (0, r) is Schurian. 

(D) Let XE~~ with nX=s. Take liftings tii of ui starting at X, i= 1, . . ..n. Then 

t?(lii)=Cr(lij), i, jE (1, . . . . VI). AS u”i, tij $ I’@?, e(fii)), there exists c E k* with tii + Ctij E 
r(_.i?, e(uli)). Applying n, N, + CUj E I(.u, e(ui)). 

(C) As DM + MU E I is a minimal relation, o - w and the result follows as in the 
proof of (D). [II 

Properties (C) and (D) are intrinsic to the quiver with relations (Q,, I) and will be 

useful. 

2.4. Proposition. Assrrrne (Q, I) satisfies (D). Ler X, _Y E Q. such that k(Q, 1)(x, _v) is 
uniserial as k(Q, 1)(x, x) module. Then, there exists a directed walk form s to y md 
a directed cycle at x such that for any dirmted waik u from .Y to _v there is A E k* 
and n E N with v + Aurv” E I(_~, p,). 

Proof. We write il, : = k(Q, 1)(x, A-) and R, = rad A,. 
As k(Q, I)(.~, _v) 2 rad ,l., k(Q, 1)(x, y), we take an element f in the difference. We 

can write f = Ly , A, o,, where U, is a directed path from s to ,v. Then, there is a 

directed path 11 from s to ,v with tl $ rad A, k(Q, 1)(x, y). 
As ~1, is uniserial, the radical series is a composition series. If R,V = 0, then 

k(Q, I)( u, y) is simple and the result trivial. Assume R, #O, we choose a directed 
cycle M’ at .Y with W+ R.:. It is easy to check that A,,.= E:li ,, ks’, where z = WE/~, for 

some 111 E N. 

Take now an arbitrary directed walk v from x to 1’. As k(Q, 1)(x, y) is A, 
uniserial module, ZL~,C 0.4 ,. or WI., c ~/l,. Let’s see what happens when 17/l& Uif,.. 
There are scalars A, E k, i = 0, . . . ,m such that 

That is, II - x:,’ ,, 1, VW’ E Q-Y, ,v) can be expressed as sum of zerc3 and minimal rela- 

tions. But trgI(s,y), so we have ~omeO~KC(O,...,rn) satisfying U- xIFA A,UW’E 

1(-V, y) is a minimal relation. As we are assuming (D), there is c’ E k-* and 

nE (O,..., rn) with u + CVW” E !(.Y, JP). 

Then, ciit” = ZJ $ rad A.,.k(Q, I)(x y) = k(Q, I)(x, ,Y) - R.,. and having z E ;R,, we 
deduce .n = 0. So, v + c ’ u E 1(x, y . The inclusion &4, c ZLI ,. by the same process 

would imply the result. Ll 

2.5. Proposition. Assume (2, I) satisfies (C) and (D). Let s, 
Cl, 

- x, + , be an arronV 

in Q and ;1= CY,, _ - q a d6* ected walk with ,u@. Suppose p’=~,l+I~n~n--e~~ie~ 
such that e, is a directea cycled in .Yi, for i = 1, . . . , n, and ,ij ’ = cji in k(Q, I) with 
c E k*. Then all the walk e, are trivial. 
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Proof. We can assume k(Q, I)@, , xn + I ) is a //I,, uniserial module, where .I y : = 

k( Q, 1)(x, .I-). Define 

we must have F’&, C,fh~,, or ,Li&., C fi”/i\., . We prove ji”/&-, C jl/i.,, . 

Let u’ be <’ directed cycle at xl such that { W’ / i = 0, . . . , EI_~, } generates A,, as 
k-vector spaL,. Ther: there is a scalar A E k* and m E N with /J + &Pw”’ E I, because 
of (D). 

Induction on n. If II = 1, al + la*@, w”’ E I and since I is admissible, el is trivial 

and HI= 0. Then, id”+ A--‘,u E I. 

Assume n> 1, by (C), 

Suppose first k(Q. 1)(x,, A-,,) is ,4,., uniserial, then by the induction hypothesis 

there exist E,’ E k* and [E [N with a,, ‘lo,, _ , -a- ~2alel + A’a,, , l -a Q,W’ E I. Multiply- 

ing by Q,, and P, we get 

and finally, 

Usins the nilpotency of the elements of /I,., and .4.\-,, we conclude that B,! and 
W”’ - I are trivial, so III = 0, and ,u + A’ ‘,M”E I. 

111 the case k(Q, I)(_q, A-,,) is J.,n umserial. Also by induction hyp:Jthesis - 
obs~~e that 1,” is defined by cancelling the cycle opposite to rhe uniserkl extreme - 

there exist XE k* and t E N with @,,a,, 1 Q,, 1 - l l L _ o-a] + A’w’a,, , .~~a,EI and we 
proceed exactly as before getting p + A’ _ ‘p v E 1. 

So we have proved F ‘Yl,,, C p/1,,, . So, ,u ” + ~pw”’ E /(A-~, A-,, + I ) for some A E k* 

snd 171 E X. We have 

a,&,, ...L12al,o, +,~a,I...aI\Sl”‘E/(.~l,.~,,+ I). 

.k before, a,, - q + X&I,, , Ia,, l a- alw”l E /(xl, A-,! + I) with A’E k*. So 1~ = 0 and 

L)-)r, - I is trivial. Then by (C), Q,,a,I , - Q2alQl + ca,, , l aI E I(s,, x,,) and by induc- 
tion hypothesis Q,, . . . ,Q,! arc trivial. ’ 

We return to the problem of how the universal cover depends on the chosen ideal. 

2.6. Proposition. Asslrr~ (Q, I,), (Q, I,) ure localiy representation ji’nite quivers 
with rclutions. Srrch that k(Q, I, ) z / z k(Q, L) urld (Q, I,) and (Q, I?) sat&Iv (C), 
(I>). i.pr R’, : (Q,, /;) -(Q, I,) he the wu&~rsal cover i= 1,2, then 6, = 02 and 

/II (Q, 1,) = H,(Q, I,). 
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Proof. For both affirmations we only need to show that two paths belonging to a 
minimal relation in I, also belong to a minimal relation in I,. 

Suppose O-4, -+kQ+(%‘-+O and O-1 2-‘kQ+++0 are exact. Given wQ,, Me 
can take f(cr)~ kQ with w(f(x)) = @(CT) in ‘6 and extend f to a morphism of 
cat ngories such that 

0 --I,------+ kQ-@- ‘/ -0 

is exact and commutative. 
Let p be a directed path in Q, ,u E II. We write p = cy,, l a= cq with (r, an arrow. By 

2.4, without lost of generality, there is a cycle in the starting point of q, wI such 

that 

and Al E k*. Doing this for each arrow we obtain 

with A E k* and Q, a non-trivial directed cycle in the starting vertex of I;, i= 2, . . . , f. 

If we had p$/-,, then by (D) we would have a non-trivial partition p=,q..,q and 

14 + CC, t I lu?l “‘p+p@] E 12, C’E k*. But this contradicts 2.5, so PE!?. 
Take now t’,u + v E 1, a minimal relation - by (D) it is enough to prove the result 

for this kind of relations. As before we get J(c;u + vi E 1? and 

f(t;rr+v)+Ap+A’vt c h’,,,,....,, &.l&-#frl,o, 
lI-11, . ..ll. 

f>l 

+ c 4 I...., ,,e;+ p,“‘v,Q;Ez;! 
‘,* ,L, - ,’ 

f>l 

with E, 1% k* and Q,.Q,’ directed cycles. 

As ,I, $ II, then p 0 &. If ,u and v form no part of a Gnimal relation in 1, as we 

have (3) and 2.5, there must be a non-trivial partition 9 = v,, . . . , vt and K E k* with 

P+W;+:C,. * vlel d2 a minimal relation. 



Applying g to this relation, WC get 

Obscrvc that in Proposition 2.6 above Arc + A’v E I,. This will be important in the 

I‘IC‘Y~ rc~lt which is the main one ot’ the scc‘tiotl. 
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Again, for x Ay an arrow in Q, f(a) = &a+ r, with T,E F2(x, y). Similarly, 
g(a) =&a + ri with Jk E k* and r(: E F’(x, y). Therefore, gf(a) =&&a + ri with 
r,“e F2(a, y) and @(a) = q&f(a) = A,&@(a) + @(r,) with @(rl) E rad2 ‘f;‘(x, y). So 
&& = 1, and t : kQ-+kQ, t(a) = ALa is inverse of h and r(12) c Il. In conclusion, 
h : k(Q, i+-+k(Q, 12) i.; an isomorphism. 

By 2.6, 6, =& Define 6: ko, -+ko2 as the identity in the vertices, and for 
x&y arrow in &@a) = Anlaa. By lvhat we observed before, it is enough to 
prove 6(&)C&. But this is trivial because n1 = n2 as quiver morphisms and 6(a) is 
just a lifting of hqa. 

It is also clear ‘that k(n2)&=hk(nl). U 

In particular 2.7 is valid when 0, and (I& have rm oriented cycles, by Lemma 2.3. 

3. The universal cover of a standurd category 

In this part of t hc work WC will study the relations bet wectl t hc universal cove1 
of the Auslander-Reitcn : ;iliver and the universal cover of the ordinary quiver of 
a locally representation-finite category. 

We will see that the construction of the universal cover we gave in Sect ion 1 coin- 
cides in some important cases with the following given by Gabriel in [4]: let N be 
a locally representation finite category and f: k(~&+ind N a covering functor: 
associated to the universal cover cY of the Auslander-Reitcn quiver of N, l& wt’ 
dcnotc by M the full subcategory of the projcctivc vertices of !c(/=~I in such a way 
t bar t hc restriction of I.‘, F/ : M -4 is a covering functor. The category AI is called 
the universal cover of Iv. 

3.1. Definition [Z]. A locatty finite-dimensional k-category f is called S~MUY ,fk 
if the vector spaces r/ (u, h)/r' f ((I, 1.1) have dimension smaller or equal to I over k, 
for cve~y pair 41, h E Ob ‘/ , whcrc r 4 denotes the radical of the category f . 

If F : / -b .I is a covering functor and :I is sqirarc free, clearly f is also so. 

Recall that for a locally bounded category ‘f there is associated a locally finite 
quiver Q and / is a connected category if and only if Q is connected. 
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proof. Let g E 3 (F) with gx =x for some x E Qb ‘6. Let Q be the quiver associated 

to f, and y--+x an arrow there. So we have O# r’k( y, x)/r’,& (y, x). Suppose that 
g_vf_v; as gx= s and g IS an equivalence of ‘4, we also have 0 2: r’f (gy, x)/r’,6 (gy, x). 
But since I”’ is a coverirlg functor between locally bounded categories, we have by (21, 

rf (y,x)/A (y,x)@r~(gy,x)/r2~Qgy,x)4 @ r~(z,x)/r%(z,x) 
F, = I;‘,’ 

r ri/jFy, Fx)/r’ Y(F_v, Fx) 

but this cant r;c!icts the fact that the last space has dimension at most I. So gy =y 
and since Q i connected, g/Oh f =id. 

Take now CTET~(Z, y) such that 8#~~r’~(~1y)/r’f,(t.?‘). As g is the identity on --. 
tibjects, O#ga E rf (z, jj)/r’+ (z, y) which has dimension 1 over k. So there are 

E, E k* and 111 E r’/ (z, _I!) with gcr = 1cr + I??. Applying I: we get, Fa = Fga = AFa + Fm 
$45 F is a covering functor, 

(1 - A)Fa = Fm E r’ I/ (F:, Fv) and O#Fa E r:/-(F:, Fv)/r’ :I (F:, cv). 

St. i, = 1 f Fm = 0. Therefore, III = 0 and ga = a. El 

3.4. Proposition. Le1 

syirtrre free categories. 
objects. Let Q be the 

F : / ---) 2 be a covering functor bet ween local/& bounded 
Asstrrrre f connected and .ff (F) acts transitive@ oip~ fihres sf 
quiver associated to 4 and Q the associuted to J. 
qlriver morphism 77 : 0-Q and two .fmctors r : h-Q -+ f and 

XQ--y---c/ -- 0 

ami cotrwlrtatir~e. 

We define lrr ’ c Oh / x Ob ’ such that (x, _v) E lrr f if and only if 
r / (.I-, >$/r’ / (A-, _v) # 0. Observe that .4(F) acts on Irr / and induces a partition of 
it. For each class B of this partition we select a representative (.I-, _v) E 0 and a(_,, ,,) E 
r/(x, v) with Oft~ (,, ,.) E r’f (A-, y)/r’ f (A-, _v). For g E h(F) we put a(,V,,,z) = gat,t, >))* As L 
+--‘) acts freely on arrows of f by 3.3, a(,.,,,,) is a well-defined irreducible for each 

(.I-, _Y) E Irr f . 

,4s / is square free, r : h-Q -+ t such that r(.v --+_v) -1 a(, .,) , I is a well-.defined, full and 
dense f’unctor. As F is a covering functor all the arrovjs in Q are of the form Fk-W’~ 
15 it h (A-, _v) E lrr ‘, so we define e : ,?Q -3 3 by .o(F.:-+ Fy) = Fa,,, .,.). We must prove 

thih definition does not depend oil the choice of (s, _y). So we assume we have 

another (x’, J’) E Irr ’ giving the srrme arrow in Q. By assumption, there is some 
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gE :4’(F) with gx=x. Then, (gx,gy)EIrr’d also covers Fx-+Fy. So, gy=y’, and 

F%: _V * ) = Fa,, gy) = Fgq, .“I = Fq., _“I and e is a well defined, full and dense functor. 
Obviously, II : &Qsuch that (x-+y)-+(Fx-+Fy) is a quiver morphism with exten- 

sion kn : kQ-+ kQ satisfying Fr = ekx. Cl 

The morphisms r and 4 which we have just defined, produce admissible ideals I 
and r such that % 2 k@, T) and i/’ z k(Q, I). In this way n : (0, r>-+(Q, I) is a quiver 
morphism which preserves relations and F= k(z) is the functor induced by 7~. 

3.5. Proposition. With the same hypothesis and notation as 3.4, if .+(n) denotes 
the automorphism group qf (0, f) which preserves n, then 

(a) $(F)s 3(n). 
(b) n : (Q,?)-,(Q, I) is a covering map defined by the action of .+(F). 

Proof. (a) Let ge 4(n). Then there is a unique induced functor @(g) such that the 
following diagram commutes. 

O------ f------+ @--1_, t 0 

Obviously, e(g) is an automorphism of t. As F@(g)r = Fr, then F@(g) = F and 
@(g)E h(F). In the same way C#J is a group morphism. 

Take now an arbitrary 9~ G(F). Observe that if x-+y is an arrow in (2, there is 
exactly one arrow g-u + gy in 0. So g : Q - 0 with g(x-+ y) = gx + gy is a well-defined 
quiver morphism. 

g: @, W@, n 

It is easy to prove that g preserves the relations, ;o that 
is a morphism of quiver with relations. Besides, for x---+ _Y an 

arrow in 6, 

So ge *“(II). As rkg=gr, then g=@(g). If there is another g’E .4(z) with g=@(g’), 
g and g’ must be equal on arrows, so g = g’ and @ is an isomorphism. 

(b) As i(F) defines F on objects, it is clear that .4(F) defines the quiver mor- 
phism R : @-+Q. We also know SS(~‘)C I, so to prove n is a covering map we only 
need to show KIT(~). Let L:’ , A, If, E I(_u, y) be a relation. We choose x E Q. with 

n.i--A-. As II is defined by the action of a group, it has the property ot’ unique path 
lifting. So, there is a directed path U, from B to p, with ~TV; = u,, i= 1, . . . , n. Without 
loss of generality we may assume 1 = no< n1 < --a < n, = n + 1. So that for arLy two 

j,.i’E (n,, l ,ni, I- I}, _Q =J~# and Ji’s are different in the intervals. 

We ser 

@,,, = ‘I i ’ A, r( vi) E k(Q, T)(.V, _Pr),, ) I 
i )I 
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for each j = 1, . . . , t. Therefore, 

.&s F is a covering functor, &, =0 and 

7 14~&(.T,_i$), j=l,..., t. E 

Let us apply what we have developed up to here to a particular but important 

case. 

3.6. Definition [2]. Let A be a locally finite-representation k-category and r its 

~~llcl;~nder-Reiten quiver. ,’ 1 is called standard if and only if ind A zk(T). 

Let .A be a standard category and L’ its &islander-Reiten quiver. Let p : I= ---T be 

the universal covering map. This induces a covering functor F= k(p) : k(l=)-+k(T) 
and ,1 c+ind A z k(T). Let / be the full subcategory of k(f) such that snob / if 
and only if p_u~,I. 

So the situ:kon 1s: 

, c___-______, k( [--) 

I f 

8. 

1 : t.‘ 
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This is precisely Gabriel’s construction in the standard case; the main result of 
this section is in the next theorem. 

3.8. Theorem. With the notations introduced above. n : (Q, r)+(Q, I) is the uni- 
versal covet. 6 has no oriented cycles. 

Proof. Let 8: (0, &+(Q, I) be the universal cover. Then, there is a covering map _ - 
n’: (Q, I)-@, r) such that nn’= I?. Assume n’is defined by the action of the group 
H. We shall prove H is trivial. As (Q, I) is locally representation finite, (Q, f) is also 
so. Let ci be the Auslander-Reiten quiver of /I’= k(Q, r) and f-1 the one of 

fi = k(Q, T). 
Using [7] and [4], the pushdown functor C induces a covering map of translation 

quivers G : ci -+ci defined by the action of H. As k(f )z ind /1 is an Auslander 
category, by [2] k(r) is also so. And by [4] it is the category of indecomposable 
modules of its projective vertices, which is precisely jl. So, k(P) s ind fi and the 
Auslander-Reiten quiver of /z is f= &. But then C is the identity and H is trivial. 
Finally, as i= has no oriented cycles and the inclusion k(o, P)-+ k(p) is faithful, Q 
has neither oriented cycles. 3 

3.9. Corollary. Let r be a locally representation finite k category. The following 
conditions are equivulen t: 

(i) A is standard. 
(ii) ,#I -1 k(Q, I) and the universal cover (0, f) of (Q, Ir) has no oriented cvcles. w 

(iii) ‘1 = k(Q, I) with (Q, I) satisjjing conditions (C) and (D). 

Proof. @*(ii) is 3.8 (ii)*(iii) is 2.3. 
(iii) * (i) follows easily from [3]. EI 

4. Schurian and standard categories 

In this last c;ction we obtain some consequences of the constructions and results 
of the prev;ous sections. 

4.1. Theorem [3]. Ever-v locul~y represent&m finite Schurian ccrtegorrp is standard. 

What we do first is to characterize the simply connected categories in the sew-e 

of [4], by n~ans of t hs simple connectedness of the ordinary quiver. 

4.2. Theorem. Let A be Q locally representation finite category. The foIlowing are 
equivalent: 

(i) A is simplv connected. 
(ii) There esisis a quiver with relations (Q, I), with A 2 k(Q, I) such that Q has 

00 oriented cycles and (Q, I) is its own universal cover. 
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(iii) kr every quiver rvilh rekhons (Q, I] wiih AZ k(Q, I), Q has no oriented 
~~t*~*les md (Q, I) is its ow universal cover. 

Proof. (i)-(ii), Tjy 141, A is standard. By 3.8 (Q, I) is its own universal cover. 

(ii) = (iii). Assume ~1 z k(Q, I’). By 2.6, n&Q, I) = I7,(Q, P’) is trivial and (Q, If) is 

its own universal cover. 

(iii) = (i). 6:: Ir 9.2, ~1 is Schurian. So by 4.1, A is standard. Then we can apply again 

3.8 and ob -YX that I?,(&) acts on the universal cover of (Q, I) which is trivial. 

So 17, (r 1 ) is trivial and ./l is simply connected. Z 

Kc obtain the following corollary. 

4.3. Theorem. Let (Q, I) be a I.r.f. quiver with relations, and n: @, &-+(Q, I) its 
rrnisersal cover. Assume 0 has no oriented cycles, rhen IT, (Q, I) = II,@:,) where 
. 1 = k(Q, I ). Hel7<*e, II, (Q, I) is a -free grolrp. 

Proof. By (7) the push down functoI induces a covering quiver morphism 

%’ - 1-i --+I‘, dcfincd by I7, (Q, I), where ,,i -- k@, r) and /1 = k(Q, I). By 4.2, /1’ is &Y0. 
\implv conncc’ted, this implies Iyi = Pi =[,. So C must be defined by L!,(c,) and 

f twtl /l,(Q, /) = 11,(&) which is free. I ! 

The condition on (Q, I) of being a locally representation finite category is 

nccc\\ar~. For example. consider 

‘0.1) has the propertv of having a universal cover without oriented cycles, but _ 

&Q, I) = ._” x ,- which is not free. 

I-he nest results relate the Schurian condition with the fact that the universal 

WW~ ha\ no oriented cycles. 

4.4. I’roposition. kF ((2, I) be u 1.r.f. qrriver with relufions and IT : (0, r’,--+(Q, I) its 
W~WIWI user. i’lleu Q hm no oriented cycles if and on/y if k@, r) is Schurian. 

PrclrBf. It’ 0 hag no oriented cycles, the result follows from 2.1 and 2.2. Assume 

(<>, i) k khurian; by 4.1 it is standard. Then by 4.8 we have an ideal p such that 

t 0. I?-- k( @, p) and the universal cover fi : (Q, f) --@, 1) has no oriented cycles. 
f> 2.8, (0. /‘) satisfies (C) and (II). But (Q, f) is its own universal cover and since 

(0, f) also satisfies (C) and (D). Then by 2.6, Q-Q without 
Cbl 
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Using 4.3 and 4.4 we can prove that standard algebras can be constructed begin- 

ing with Schurian algebras. 

4.5. Theorem. For a finite-dimensional basic artd indecomposable k-algebra A of 
finite representation type, the fa ilo wing conditions are equivalent: 

(i) A is standard. 
(ii) There is a finite-dimensional Schurian algebra A of finite representation type 

and a covering morphism p:jf-+A, that is, there are quivers with relations 
associated to /z and A with a covering map between them. 

Proof. If p: (Q, T)-+(Q, I) is a covering with k@, r) Schurian, the common uni- 

versal cover (@, T) must be Schurian. By 4.4, 6 has no oriented cycles. Assume now 
_ _ 

x : (Q, I)+(Q, I) is the unIversa1 cover with YI z k(Q, 1) and & has no oriented cycles. 

n is defined by the action of a free group G, by 4.3. We denote /1’= k@, II) which 

is Schurian. We proceed now as in 5.2 of [4]: for each SE Q. WC fix GE (& with 

772 = .Y. 
R, := { _? E & 1 Hom,i(..., y> #O} is a finite set and as G acts freely on & 

S:={y~G\(ll IZ~.XEQ~ with R,n y(R,)#O) is finite. As G is free, G is residually 
finite, so there is a finite index subgroup Pa G with PnS = 0. We have 

with R defined by the action of P and TI’ by that of G/P. /I= k@, T) is a finite- 

dimensional algebra of finite representation type. We prove /I is Schurian. 

Let s, t e Q(, with Hom.j(s, t)+:O. We take SE oCj with R(s)=s, and fi(?) = t with 

Hom,i(s, 7) f 0. There exists y E G, x E Qr, satisfying y.? =_f. Suppose 8?‘= t and 

Hom,i(S, t”) #O, F+ ?. In this case, we have 1 #:6 E P with a?= ?. As 0 f Hom.,&C, F), 

yr~ R, and similarly y&== y?% R,. Then 1 #y&-’ such that y6y-’ E P, y6Y_*(yF) = 

$‘E R,. Then @r- ’ E S, and PnS#0, which is a contradiction. So, ?= 7 and 

Ho~.~(s, t) = 3 Horn.. i(S, r’) = Hom,i(.$ F) 
VI’- I 

has dimension 1 over k. So /i is Schurian. 1 1 
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