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Covering techniques in representation theory have become important after the
work of Bongartz-Gabriel [2], Gabriel [4] and Riedtmann [9], [10]. The construc-
tion of these covers assumes that the Auslander-Reiten quiver is known.

In this paper we associate to any finite-dimensional k-algebra (k aigebraically
closed) a covering of its usual quiver independent of the Auslander-Reiten quiver
(this covering is in fact a particular case of the covering developed by Green [5]).

This construction is defined for any representation type and it is Galois (or regular
in the topological sense). Unfortunately, it depends on the choice of an ideal.

We will prove however that it is unique for coverings without oriented cycles and
that for the standard case it coincides with the covering given by Gabriel in [4].

We will use this cover to give another characterization of the simply connected
algebras considered by Bongartz-Gabriel [2] and Bautista-Larrion-Salmerén [1].
We can use it also to prove that the standard algebras are precisely those algebras
of finite representation type having a covering without oriented cycles.

The results proved are essentially contained in the second author’s Master thesis
[8].

While writing these paper we received from Bretscher and Gabriel [3] a
construction which does not require either the knowledge of the indecomposable
modules.

J. Waschbiisch has used a similar covering [11], we thank him and F. Larrion for
some helpful conversations.

1. The universal cover

Let us fix some notation. Throughout the paper k will be an algebraically closed
field. Let Q bc a non-necessarily finite quiver with vertices Q, and arrows Q,. For
any vertex x€ Q,, X" (resp. x ) will denote the set of vertices y such that there exists
an arrow x—y (resp. y—x). We assume Q has no double arrows and is connected.

Following [2], KQ will be the path category and F the ideal of kQ generated by
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the arrows. An ideal cf kQ will be called admissible if for any vertex x € Q, there
exist natural numbers m, n such that

F'(x, "CI(x, )CF*x,-) and F"(,x)CI(-,x)C F(-, %).

If Q is locally finite and 7 admissible, &(Q, I) =kQ/1I is a locally bounded category.
Conversely, for any locally bounded k-category ¢ there is a locally finite quiver Q
and an admissible ideal 7 such that 7 =k(Q, I). (See [2].)

A pair (¢ ) as above will be called a quiver with relations.

1.1. Definitions. A group G of (Q, 1)-automorphisms is a group of automorphisms
of the quiver Q which preserve the ideal /. The group is called admissible if for each
vertex xe Q, the G-orbit contains at most one vertex from x"~ and one from x".

Given an admissible group G of (Q, /)-automorphisms, we can define the orbit
guiver Q/G. Let n:Q—Q/G be the natural map and denote I= n(I) the ideal of
Q/G induced by /. In this situation we have the following lemma:

1.2. Lemma. (Q/G,I) is a quiver with relations. The natural map
n:(Q, = (Q/G, I) is a surjective morphism of quivers with relations such that for
every x€ Q,, the induced functions x' -+7(x)" and x™ —n(x)" are bijective. [}

A morphism of quivers with relations f: (A4, J)=(Q, 1) is a covering if there exists
an admissible group of (A,J), G such that the following diagram comuutes.

, (1. J)

/

X N
(A/G, J) = o.n

By 1.2, covering maps have the unique lifting of walks property. We ask tor the
relations which can be lifted by a covering map. The tollowing concept gives the
answer, it will be very usetul throughout the paper.

1.3. Definition. Let (Q, /) be a quiver with relations. A relationp=Y"  A,u, € l(x, v)
with A e A* and u, a directed path from x to vy, is a minimal relation it n=2 and
for every non-empty proper subset A of {1L....n}, ¥ Au gl v).

As usual, o will be called a zero relation when n =1,
Of course, every relation is sum of minimal and zero relations.

1.4. Proposition. Let f:(A,J)=(Q. 1) be a covering morphism, defined by :he
action of G. Let 9 € I(x, ¥) be a minimal relation and let xe€ A, with f(X)=x. Then,
there exists v€ 1, and 6 € J(x, V) with f(0) = 0.
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Proof. We write o=Y  A;u; with A;ek* and u;, i=1,...,n pairwise different
directed paths (we say o is in a reduced form). Since f is a covering map, there exist
oieJx,y)i=L...mand o=Y" fl0)). As fIX)=x=f(x;), there is a g;e G with
gx;=xfori=1,...,m. Then, g,=g,f;€ J(% gy) and o=} | f(g;). We can clearly
assume the vertices g; y; are pairwise different. We write ¢;=Y" | u;;v;; in reduced
form. So we obtain

Zl Al = ):l Z' u; f(vy)

4 - i - xS

which is also in reduced form, because of the unique path lifting property.
Therefore, there exisis a bijection

vl oy = {D]ie{l,...,m} jell,....m}}

such that u, = flv,,)) and 4, =u,,, for every ie{l,...,n}.
If we had m>1,0#K=r l{(1,j)|j= L...om}C{l,...,n} such that

Zk A=Y i flv)=fle)efd)=1,
1€k 7=1
which is a contradiction in case ¢ is a minimal or zero relation. Thus m =1 and

o=May)).

Denote now by m(7) the set of minimal relations of the ideal /. By 1.4, the
category of coverings of (Q, /) with covering maps is just the category Cov(Q, m(/))
defined in [5].

Applying [5; (1.2)] to our particular case we get

1.5. Corollary. There exists a universal cover of (Q, I). That is, there is a covering
map n:(Q, N—(Q, 1) such that for any other covering map f:(Q.1)~(Q, I) there
exists a covering n': (0, N—(O,T) with fn’=n. If e Q, and x€ Q, are such that
nx=fX, then n’' can be uniquely chosen so that n'x = X.

We give here a brief description of (Q, 1), because it will be required later.

Fix a vertex x,€ Q,. Let W be the topological universal cover of Q with base
point in x,. There is a natural map p.: % —Q given by the action of the fundamen-
tal group I1,(Q, xy). Let N(Q,m(]), x,) be the subgroup of 17,(Q, x) defined in [5].
That is, N(Q,m(l), x,) is the normal subgroup of [1,(Q,x,) gencraied by all
clements of the form [y '« 'vy] where y is a path from x;, to x and 1, v are directed
paths from x to v such that there is an element ¥" | A,w; € m(I) with w=w, and
V=W,

Then, O is the orbit quiver W/N(Q, r1(I),x,) and the map n:Q—Q is given by
the action of the group 77,(Q, 1) = IT\(Q, xy)/N(Q, m(I), ;). The relations m(f) can
be lifted to O. So, [ is the admissible ideal of kQ generated by the liftings of the
elements of m(/) and zero relations in /.
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Given a basic and indecomposable k-algebra A, we can build a quiver with
relations (Q, ) suck that A=k(Q, 7). We can now obtain the universal cover
n:(Q, N-+(Q, I and induce a functor k(7): k(Q, N—A. We would like to say that
A =k(Q, I') is the universal cover of A. Unfortunately this cannot be done because
of the ambiguity in the choice of the ideal /. Let’s remind the following example
given by Riedtmann:

1 B
v C___"._,,l/\ 2
¥

and let /, be the ideal generated by a’—y8, By—pfay,a* and I, generated by
@~ B by,

Let A, =A(Q. 1)) and .1, =k(Q. I,) be the corresponding algebras. If char k #2,
.1, =.1;. Nevertheless, the universal cover of (Q, I,) is itself and the universal cover
of (Q, I,) is an infinite quiver.

2. Universil covers without oriented cycles

Let (Q, 1) be a quiver with relations. Throughout this section .1 = k(Q, I') will be
a locally representation-finite category (see [2]).

We are interested in the existence of coverings of (Q, ) without oricnted cycles.
Clearly, this is equivalent to ask for the same condition on the universai cover.

We will use the following conditions proved by Jans [6].

Let Py and P, be two indecomposable projective 1-modules. Then End (P,) and
End (P,) are uniserial rings and Hom (P, P) is a End ,(P-)-End ,(P,) bimodule
which is uniserial either as End (P;)-module or as End ((P,)-mocule.

2.1. Proposition (Gabriel [4]). Let n:(Q, —=(Q, I) be a covering map. Then k(Q, I)
ts also a locally representation-finite caregory.

We recall that a category ¢ is called Schurian if for any two objects x, e Ob ¢,
dimg (v, )< 1. We say that (Q. /1) is Schurian when A(Q, /) is so.

2.2, Lemma. Assume Q without criented cvceles. Thea (Q, 1) is Schurian.
Proof. This is a direct consequence of the results of Jans [6].

Let 7:(Q, N—(Q. 1) be the universal cover of o, .
2.3. Lemma. Assume Q has no oriented cvcles. Then:

(DY Iy X7 el is a minimai relation, then for everv two ifferent
.)€ Lo nt there exists ¢e k* such that u, + cu el
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v
) If x5 y‘—‘;—,‘t Z are directed paths with vu, wu ¢ I and A € k*, then we have
vu+Awuel if and only if v+ Awel.

Proof. By 2.1 and 2.2, (Q, 1) is Schurian.

(D) Let e @, with nx=x. Take liftings &; of u; starting at %, i=1,...,n. Then
e;)=e)), ijefl,....n}. As i, d; ¢ [(%,e(i1;)), there exists ce k* with 1+ cii; e
I(x,e(d;)). Applying =, u; + cu; € I(x, e(u;)).

(C) As vu+wuel is a minimal relation, v~ w and the result follows as in the
proof of (D). []

Properties (C) and (D) are intrinsic to the quiver with relations (Q. /) and will be
useful.

2.4. Proposition. Assume (Q, I) satisfies (D). Lei x, y € Q, such that k(Q, I)(x, v) is
uniserial as kK(Q, I)(x, X) module. Then, there exists a directed walk form x to y and
a directed cycle at x such that for any directed walk v from x to v there is A € k*
and neN with v+ Auw" e l(x, v).

Proof. We write A, :=k(Q, I)(x,x) and R, =rad A,.

As K(Q, )(x, ¥) Drad 1,k(Q, I)(x, ), we take an element f in the difference. We
can write f=Y"  A,a, where u; is a directed path from x to y. Then, there is a
directed path # from x to y with @& rad A .k(Q, I(x, »).

As A, is uniserial, the radical series is a composition series. If R,=0, then
k(Q, I)(x, v) is simple and the result trivial. Assume R, #0, we choose a directed
cycle w at x with we Ry, It is easy to check that A, =¥" kz', where z=we A, for
some m e N.

Take now an arbitrary directed walk v from x to y. As k(Q, N(x, ») is A,
uniserial module, #1,C0A, or 6A,C#A,. Let's see what happens when #A4,C 0A,.
There are scalars 4;e &, i=0,...,m such that

a=Y 2,02'=Y Auw.

Y -0

That is, «—-Y¥"  A,ow € I(x, y) can be expressed as sum of zero and minimal rela-

-ty ()
tions. But w ¢ I(x, ¥), so we have :ome 0+ KC{0,...,m} satisfyingu—-Y,_, Aow'e
I(x, v) is a minimal relation. As we are assuming (D), there is cek* and
nef{0,...,m} with u+cow"el(x, y).
Then, coz"=ag¢rad A k(Q, I)(x ¥)=k(Q,I)x,y)- R, and having zeR,, we
deduce n=0. So, v+c 'uel(x,y . The inclusion A4,CiA, by ths same process

would imply the result. L[]

2.5. Proposition. Assume ( ,, 1) satisfies (C) and (D). Let x,—(i*xH , be an arrow
in Qand u=a,---a, a di ected walk with ug¢ 1. Suppose u’'=9,,,0,0, " 00,0,
such that o, is a directea cycled in x;, for i=1....,n, and g’'=cii in k(Q, 1) with
cek* Then all the walk o, are trivial.
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Proof. We can assume k(Q, I)(xy,x,.) is a A, uniserial module, where A,:=
k(Q, I)(x, x). Define

U =0,0,0, 1 020001 € (X, Xy 1),

we must have g’A, CaA,, or aA, Cia"A, . We prove @"A, CaA,,.

Let w be . directed cycle at x, such that {W' Ii =0,...,%1,} generates A, as
k-vector spa... Then there is a scalar A € k* and me N with u+ Au”"w™ € I, because
of (D).

Induction on n. If n=1, a,+ Aa,;0,w" €I and since / is admissible, g, is trivial
and m=0. Then, "+ A 'uel

Assume n> 1, by (C),

m
G, l“'al+'{9nannlgn~l'“QZalQlw el

Suppose first k(Q. I)xy, x,) is A, uniserial, then by the induction hypothesis
there exist A'ek* and re N with @, 0, - 0.0, + A, ., -~ ayw' € 1. Multiply-
ing by o, and w", we get

A0y 1Oy -1 Q20,0 W" + A0,y oW e ]
and finally,
a, | + K10,0, | Q“W"” {E ! with K| GI\'“.

Using the nilpotency of the elements of 1, and A, we conclude that ¢, and
w” " are trivial, so m=0, and u+ 1A’ 'u"el.

In the case A(Q.7I)x,,x,) is A, uniserial. Also by induction hypothesis -
observe that ¢” is defined by cancelling the cycle opposite to the uniserial extreme -
there exist A’ek* and re N with g,a, 0,.,-0:¢;+A'w'e, ,---a; €l and we
proceed exactly as before getting u+ 4’ 'u"el.

So we have proved a"A, CjA,,. So, u"+Auw"el(x|,x,,,) for some Aek*
and me ™. We have

On o 1 0@y~ 0200 +CAY O € [(xl' Xy I)'

"

«,0

nQn 02000, + ’1an W€ 1(-\-1,.\'" + l)-

As before, @, a,+4'0, . a, - a,w"el(x,x,, ) with A’ek*. So m=0 and
o, .y istrivial. Then by (C), ¢0,@, |-~ 0-0,0, + ¢, |- a, € I(x,,.x,) and by induc-
tion hypothesis 0,,...,0, are trivial.

We return to the problem ot how the universal cover depends on the chosen ideal.

2.6. Proposition. Assume (Q, 1,),(Q, I,) are locally representation finite quivers
with relations. Such that k(Q, 1)Y=+ =k(Q, I,) and (Q, I,) and (Q, I,) satisfy (C),
(D). Let 7, :(Q,1)~(Q. 1) be the universal cover i=1,2, then Q,=Q, and
11(Q, 1) =11,(Q, I,).
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Proof. For both affirmations we only need to show that two patt.s belonging to a
minimal relation in /, also belong to a minimal relation in /,.

Suppose 01, »kQ— %« -0 and 0—1,»kQ— ¥—0 are exact. Given a € Q;, wne
can take f(a)ekQ with y(f(x))=¢(a) in 4 and extend f to a morphism of
cat~gories such that

0——— [, ——kQ—2— .0
fl S
v 1L
v
0 ﬁ‘[: ;kQ — / — ()
2| S
+ v ¢
0 %11 *;kQ >/ > ()

o A~ PP SRS

Let u be a directed path in Q, uel,. We write u=a,,--- @, with @, an arrow. By
2.4, without lost of generality, there is a cycle in the starting point of @, w, such
that

"1

f(al)+l|a‘+ Z Klia]lt';€12,
11

r each arrow we obtain
Nay) - flay)=flwy e

n

S+du+ Y k0 0 01,0, € I
TR TR
>4

with 4 € k* and g, a non-trivial directed cycle in the starting vertex of u;, i=2,...,1.
If we had u ¢ /5, then by (D) we would have a non-trivial partition u =g, --- 4, and
U+ CO 1,0, H20-110) € I, cek*. But this contradicts 2.5, so pe/s.

Take now cu + v e/, a minimal relation - by (D) it is enough to prove the result
for this kind of relations. As before we get f(cu+ v, el and

S+ vy+ A+ A'va E Koo Qr oty 11 @)
[ A TH
1>1

‘/ ’ ’
+ Z "V.....,\',Ql+lv1'“VIQIEIZ

with A 1"ek* and g,, 0, directed cycles.

As 1 ¢/, then ug¢l,. If u and v form no part of a minimal relation in /5 as we
have (D) and 2.5, there must be a non-trivial partition * =v,,...,v, and k € k* with
u+ko,, v, -vi0,€l, a minimal relation.
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Applying g to this relation, we get

” ” '
du+ Y Cupooo @l @y ) Cop @iV ey €l

i, Lt v L

with € k*. Again by 2.5 we must have v=v,--- v/, 1>1 and k'€ k* with
HE KR v vie el

But we also i ad cu+ vel,, so we obtain ¢ 'v+nx'g,, \v,0 - v,0, €I, which con-

1

tradicts 2.5, Jhentiereis a c'ek*and u+c'vel,,

Observe that in Proposition 2.6 above Au + A’vel,. This will be important in the
niext result which is the main one of the section.

2.7. Theorem. Asswme (Q, 1) (Q, I5) are locally representation-finite quivers with
relations, such k(Q,1))= ¢ =k(Q,1,) and (Q, 1)).(Q. I,) satisfv (C) and (D). Let
n, (O, D) (O 1) be a universal cover i=1,2. Then there exist isomorphisms
hek(QU ) 2 k(Q 1) and i kiQy 1) -2k(Qs, 15) making the following  square
commutative:

< = " ~ =
KO 4 PK(Qa 1)
I
A(ﬁ,)] keny)

i , :
KO » RO

Proot. With the notation of 2.6 we write the commutative diagram:

() '.Il ) 'l\Q ‘/,.,_,, (,.()
| .
! l t
"]
0 '[: : h/‘Q - s )
i
L E &8
!
X ¢
0 '”'ll ,/‘() » . ()

Let v “») be an arrow in Q. as in 2.6 fl+ A+ Y7 xaw €l v) for
some 4, €A% We define h:kQ ~kQ as h(a) =A,a, which is an isomorphism of
vategories. In 2.6 and the observation above we showed that A preserves zero and
minimal relations. Then, A CI and A extends to a morphism of categories
o h(Q 1))y k(Q, 15). To prove it is an isomorphism, it will be enough to show that
s inverse also preserves relations.
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Again, for x—2+y an arrow in Q, f(a)=A,a+r, with r,e F3(x, ). Similarly,
gl@)=A,a+r, with A,ek* and r,€ F>(x, ). Therefore, gf(@)=A,A'ya+r. with
raeFXa,y) and ¢(@)=@gf(a)=A,A,0@)+o(ry) with @(r))erad® «(x,y). So
Aghq=1, and 1: kQ—kQ, t(a)=A_a is inverse of h and #(/,)C/,. In conclusion,
h:k(Q, I,)=k(Q, I,) i5 an isomorphism.

By 2.6, 0,=0,. Define A:kQ, —~k(, as the identity in the vertices, and for
x—=+y arrow in 0y, h(a) = A, ,@. By what we observed before, it is enough to
prove A(f,)C I,. But this is trivial because n, = n, as quiver morphisms and A(e) is
just a lifting of An,a.

It is also clear that k(z:)A =hk(m,). [

In particular 2.7 is valid when Q, and , have no oriented cycles, by Lemma 2.3,

3. The universal cover of a standurd category

In this part of the work we will study the relations between the universal cover
of the Auslander-Reiten ::aiver and the universal cover of the ordinary quiver of
a locally representation-finite category.

We will see that the construction of the universal cover we gave in Section 1 coin-
cides in some important cases with the following given by Gabriel in [4]: let N be
a locally representation finite category and f:k(/\)—ind N a covering functor
associated to the universal cover Iy of the Auslander-Reiten quiver of N, Iy, we
denote by M the full subcategory of the projective vertices of A&(/\) in such a way
that the restriction of F,F/: M =N is a covering functor. The category M is called
the universal cover of N.

3.1. Definition [2). A locally finite-dimensional k-category  is called square free
if the vector spaces r7 (a, b)/r*#(a, b) have dimension smaller or equal to 1 over &,
for every pair ¢, be Ob 7, where r7 denotes the radical ot the category 7.

If F:7 ». is a covering functor and & is square free, clearly ¢ is also so.

3.2. Definition. Let /: ¢ — & bea covering tunctor. We denote by +(F) the group
of ¢ -automorphisms which preserve F.

A group of equivalences of 7 acts freely on arrows of v if for any ¢ € 4(F) with
gv=x for some YeOb 7, then g/0Ob ¢ =id and for every aer/(y 3) such that
O#aer/(v2)/r (v ) we have gla) =a.

Recall that for a locally bounded category v there is associated a locally finite
quiver Q and ¢ is a connected category if and only if Q is connected.

3.3. Proposition. Ler F:+ — . be a covering functor between locally bounded
square free categories; assume + connected. Then, 4(F) acts freely on arrows of 7.
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Proof. Let ge %(F) with gx=x for some xe Ob «. Let Q be the quiver associated
to +, and y—x an arrow there. So we have 0#rv(y, x)/rz‘f(y, X). Suppose that
gv#y; as gx=x and g is an equivalence of #, we also have 0 rv (gy, x)/r*¢ (gy, X).
But since F is a covering functor between locally bounded categories, we have by [2],

FeAY XY ()@ re(gy, X)/rie(gy, s @ re(z, x)/r*e(z x)

=rv (Fy, Fx)/r* v (Fv, Fx)

but this contrcdicts the fact that the last space has dimension at most 1. So gy=y
and since ¢ : connected, g/0b 7 =id.

Take now a€r/(z, y) such that 0#a@erv(z, ¥)/r*+(z, ¥). As g is the identity on
objects, 0#gaers(z, »)/r*#(z, ) which has dimension 1 over k. So there are
iek*and mer®s(z, v) with ga =Aa+m. Applying F we get, Fa = Fga=AFa+ Fm.
As F is a covering functor,

(I-NFa=Fmer*s (F, Fv) and O0#Faer.(FzFv)/ri.(Fz Fv).

So A=1, Fm=0. Therefore, m=0 and ga=a. [

3.4. Proposition. Let F: ¢ = be a covering functor between locally bounded
square free categories. Assume ¢ connected and +(F) acts transitively on fibres of
objects. Let Q be the quiver associated to + and Q the associated to ..

Then, there exists a quiver morphism n: Q—Q and two functors r:kQ— ¢+ and
0:kQ— . such that

kQ— — —(
| l
A‘x% } I3
| |
AQ > // ‘;0

14

is exact and commutative.

Proof. We define Irr» COb ¢ xOb+ such that (v, v elrr 7 if and only if
re(x, ¥)/r7/(x, ») #0. Observe that 4(F) acts on Irr ¢ and induces a pariition of
it. For each class 6 of this partition we select a representative (x, v)e # and Q) E
re(x y) with 0#@, erv(x, »/rie(x, v). For ge «(F) we Put @y 1) =8y, vy AS
»(F) acts freely on arrows of # by 3.3, ¢, ,, is a well-defined irreducible for each
(x, welr-.

As 7 is square free, r:kQ — ¢ such that r(x — v) = Q,, v is a well-defined, full and
dense functor. As Fis a covering functor all the arrows in Q are of the form Fx— Fy
with (v, v)elrr 7, so we define 9: xQ— ' by o(Fx—Fv) = Fa, ,,. We must prove
this definition does not depend on the choice of (v, y). So we assume we have
another (x', v')elrr + giving the same arrow in Q. By assumption, there is some
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ge 4(F) with gx=x. Then, (gx,gy)elrr 7 also covers Fx—Fy. So, gy=y’, and
Fa. = Fagy = F8« ) = Fay, ) and g is a well defined, full and dense functor.

Obviously, 7 : @ —Q such that (x—y)— (Fx— Fy) is a quiver morphism with exten-
sion kn : kQ—kQ satisfying Fr=pkn. [

The morphisms r and @ which we have just defined, produce admissible ideals /
and T such that ¢ =k(Q, T) and ~ = k(Q, I). In this way n: (Q, = (Q, I) is a quiver
morphism which preserves relations and F=k(n) is the functor induced by n.

3.5. Proposition. With the same hypothesis and notation as 3.4, if %#(n) denotes
the automorphism group of (Q,I) which preserves n, then

@) «(F)= »(n).

(b) n:(Q,N—(Q.1) is a covering map defined by the action of 4(F).

Proof. (a) Let ge 4(n). Then there is a unique induced functor ¢(g) such that the
following diagram commutes.

0——T kO ¥ 0
ke ke L o(g)
‘
0 .1 » kO 0

Obviously, ¢(g) is an automorphism of 7. As F¢(g)r=Fr, then F¢(g)=F and
@(g) e 4(F). In the same way ¢ is a group morphism.

Take now an arbitrary ge 4(F). Observe that if x—y is an arrow in Q, there is
exactly one arrow gx— gy in Q. So g: 0 — Q with g(x — y) = gx — gy is a well-defined
quiver morphism. It is easy to prove that g preserves the relations, so that
g:(0,H—(Q, 1) is a morphism of quiver with relations. Besides, for x—y an
arrow in Q,

ng(l) = n(gx—gy)=Fgx—Fgy=Fx—>Fy=n(/).

So ge #(n). As rkg=gr, then g=¢(g). If there is another g'e 4(n) with g=¢(g"),
g and g’ must be equal on arrows, so g=g’ and ¢ is an isomorphism.

(b) As (F) defines F on objects, it is clear that +(F) defines the quiver mor-
phism n: (¢~ Q. We also know n(/)C/, so to prove 7 is a covering map we only
need to show ICn(l). Let ¥ 4,1, € l(x, y) be a relation. We choose ¥e Q, with
nx=x. As 1 is defined by the action of a group, it has the property of unique path
lifting. So, there is a directed path v, from £ to 7, with nv; =u,, i=1,...,n. Without
loss of generality we may assume | =ny<n;<---<n,=n+1. So that for aLy two
jj'ei{n,....,n;, =1}, ¥;=y; and y’s are different in the intervals.

We set

nooo

O, = L Ar(v)ek(Q )T, 7,)

- N
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for each j=1,...,t. Therefore,

n

£ Fg.)= £ 4 Frw)= £ denw=e( £ du)=0
1 i=

i 1-1 i=1

As F is a covering functor, ¢;, =0 and

n 0

D )i')iEI—(j’,.vn,), j:l,-..,t. D
Let us apply what we have developed up to here to a particular but important
case.

3.6. Definition [2]. Let A be a locally finite-representation A-category and I its
Auslander-Reiten quiver. .1 is called standard if and only if ind A=k(I").

Let -1 be a standard category and I its Auslander-Reiten quiver. Let p: I" =T be
the universal covering map. This induces a covering functor F=k(p): k(5= k()
and .1&ind A =A(F). Let # be the full subcategory of A(F) such that xeOb ¢ if
and only if pxe 1.

So the situation 1s:

¢ e (M)
| i
I K
: |
i i
A4S k() =ind -

where £ denotes the restriction of F .#Clearly, F is also a covering furctor. To apply
3.5 we only need to prove:

3.7. Lemma. «(F) acts transitively on fibres of objects.

Proof. Let x, ve Ob + with Fx=Fy. Then Fx = Fy. By definition of the universal
cover, there is an automorphism ge «{p) with gv=v. Let §: 7 -» 7 be the restric-
ton of k() : k(DY >k 1o 7. Cleacly, @ is a - -automorphism with ge «(F) and
AN

Let Q be the quiver of .1 and Q the guiver of +. By 3.7 and 3.5, there are ideals
Tor Qand 7 of Q and n:(Q, (D 1) a corering map defined by the action of
«(F) such that the tollowing diagri m commutes.

kO, =+ —— k(I";
I | -

Aoy, ‘ !
¥ v v

KQ D= 1 k(]

.80
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This is precisely Gabriel’s construction in the standard case; the main result of
this section is in the next theorem.

3.8. Theorem. With the notations introduced above, n:(Q,I)=(Q,I) is the uni-
versal cover. Q has no oriented cycles.

Proof. Let 7: (Q, f)-*(Q, I) be the universal cover. Then, there is a covering map
n’:(Q, N—(Q, I such that nn’= 7. Assume =’ is defined by the action of the group
H. We shall prove H is trivial. As (Q, I) is locally representation finite, (Q, /) is also
so. Let I'; be the Auslander-Reiten quiver of A=k(Q, /) and Iy the one of
A=k(Q,D.

Using [7] and [4], the pushdown functor X induces a covering map of translation
quivers X : ' —I; defined by the action of H. As k(I')=ind A is an Auslander
category, by [2] k() is also so. And by [4] it is the category of indecomposable
modules of its projective vertices, which is precisely A. So, k(/)=ind A and the
Auslander-Reiten quiver of A is "= I"1. But then X is the identity and H is trivial.
Finally, as I has no oriented cycles and the inclusion k(Q, N —k(I") is faithful, Q0
has neither oriented cycles. L[]

3.9. Corollary. Let I be a locally representation finite k category. The following
conditions are equivalent:
(i) A is standard.
(i1) A =k(Q, 1) and the universal cover (Q, N of (Q. 1) has no oriented cycles.
(ii) A =k(Q, I) with (Q, I) satisfving conditions (C) and (D).

Proof. (i)=(ii) is 3.8 (ii)=(iii) is 2.3.
(iii)= (i) follows easily from [3]. [J]

4. Schurian and standard categories

In this last cection we obtain some consequences of the constructions and results
of the previous sections.

4.1. Theorem [3). Every locally representation finite Schurian category is standard.

What we do first is to characterize the simply connected categories in the sence
of [4], by means of the simple connectedness of the ordinary quiver.

4.2. Theorem. Ler A be a locally representation finite category. The following are
equivalent:

(1) A is simply connected.

(i) There exists a quiver with relations (Q, 1), with A =k(Q, 1) such that Q has
no oriented cycles and (Q, 1) is its own universal cover.
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(ii1) For every quiver with relations (Q, I} with A=k(Q, 1), Q has no oriented
cvcles and (Q, 1) is its own universal cover.

Proof. (i)=(ii). By [4], A is standard. By 3.8 (Q, I) is its own universal cover.
(i) = (iii). Assume A=k(Q,I'). By 2.6, I1,(Q, I)=1I1,(Q, ') is trivial and (Q, 1) is
its own univer<al cover.
(iii) = (i). By 2.2, A is Schurian. So by 4.1, A is standard. Then we can apply again
3.8 and ok ~rvc that I7,(I) acts on the universal cover of (Q, I) which is trivial.
So I1(I" ) s trivial and A is simply connected. O]

We obtain the following corollary.

4.3. Theorem. Let (Q, 1) be a I.r.f. quiver with relations, and n: (Q, f)—*(Q, D) its
universal cover. Assume Q has no oriented cycles, then IT,(Q,1)=IT(I' 1) where
1= K(Q, 1. Hence, I1,(Q, 1) is a free group.

Proof. By [7] the push down functor induces a covering quiver morphism
20175~ defined by 11,(Q, 1), where A - k(Q,7) and A=k(Q,I). By 4.2, A is
simply connected, this implies /'3=7;=r,. So X must be defined by /7,(I",) and
then I1(Q. ) =T1,(I" ) which is free. ]

The condition on (Q,]) of being a locally representation finite category is
necessary. For example. comicier

GO

with / genereted by
fBy=0= al , a:f =B a,, Brar=a,p,.

‘Q. 1) has the property of having a universal cover without oriented cycles, but
I1,(Q, I)=_"x." which is not free.

The next results relate the Schurian condition with the fact that the universal
cover has no oriented cvcles.

1.4. Proposition. Let (Q, 1) be a l.r.f. quiver with relations and n : (Q, N—(Q, I) its
universal cover. Then Q has no oriented cycles if and only if f k(Q, I is Schurian.

Proof. It ¢ has no oriented cycles, the result follows from 2.1 and 2.2. Assume
K(Q, I is Schurian; by 4.1 it is standard. Then by 4.8 we have an ideal /” such that
KQ. 1 = k(Q. T'y and the universal cover 7 :(Q, I)~(Q, ) has no oriented cycles.

By 2.3,(Q. I satisfies (C) and (D). But (O, /) is its own universal cover and since
KIQ. I is Schurian, (Q. 1) also satisfies (C) and (D). Then by 2.6, 0 =0 without

orenied aveles.
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Using 4.3 and 4.4 we can prove that standard algebras can be constructed begin-
ing with Schurian algebras.

4.5. Theorem. For a finite-dimensional basic and indecomposable k-algebra A of
finite representation type, the following conditions are equivalent:

(1) A is standard.

(i) There is a finite-dimensional Schurian algebra A of finite representation type
and a covering morphism p:A—A, that is, there are quivers with relations
associated to A and A with a covering map between them.

Proof. If p:(Q, 1)~ (Q,1) is a covering with k(Q, I) Schurian, the common uni-
versal cover (Q, D) must be Schurian. By 4.4, Q has no oriented cycles. Assume now
m:(Q, N—(Q, I)is the universal cover with A = k(Q, I') and O has no oriented cycles.
n is defined by the action of a free group G, by 4.3. We denote A = (0, ) which
is Schurian. We proceed now as in 5.2 of [4]: for each xe Q, we fix ¥e Q, with
nX=X.

R.:={yeQ,|Hom (% $)#0} is a finite set and as G acts freely on Q,,
S:={yeG\ {1} (er Q, with R, Ny(R,)+0} is finite. As G is free, G is residually
finite, so there is a finite index subgroup P<G with PNS=0. We have

Q.
\
G
= - n’ N
Q.nN——W@. D
with 7 defined by the action of P and n’ by that of G/P. A=k({,I) is a finite-
dimensional algebra of finite representation type. We prove A is Schurian.

Let s,re Q, with Hom 1(s, ) #0. We take e Q, with 7(3)=s, and &(7)=1 with
Hom ;(3,7) #0. There exists ye G, xe Q, satisfying ps=x. Suppose 7t'=¢ and
Hom ;(5,7')#0, 71" In this case, we have 1#6 € P with 67=1". As 0# Hom j(%, 1),
yre R, and similarly yd7 =y’ € R,. Then 1 #£ydy ! such that ydy 'e P, ydy ' (y1) =
yi'e R,. Then pdy~'e S, and PNS#0, which is a contradiction. So, r=¢" and

-~

-’

P ———

Hom i(s,)= @ Hom ;(5,7")=Hom ;(5, 1)

has dimension 1 over £. So A is Schurian. |
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